Direct Numerical Simulation of natural, mixed and forced convection in liquid metals: selected results

نویسندگان

چکیده

Selected results of three Direct Numerical Simulations are presented, on relevant test cases for the thermal hydraulics liquid–metal-cooled nuclear reactors, encompassing a wide spectrum turbulent convection regimes. The first case is Rayleigh-Bénard cell at Grashof number Gr=5×107, representative conditions in unstably stratified layer coolant reactor pool both standard operating and emergency situations, e.g. shutdown cooling system. second mixed cold-hot–cold triple jet configuration, liquid streams exiting from core into pool, modeling striping fatigue phenomena vessel containment walls. third fully-developed flow vertical bare rod bundle with triangular arrangement pitch-to-diameter ratio P/D=1.4, forced conditions. These regimes respectively represent normal operation or decay heat removal cores. availability these numerical databases will allows an in-depth analysis transfer metals under different regimes, also development, calibration validation models.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Direct numerical simulation of natural convection in a vertical channel

This study presents direct numerical simulations of natural convection for air (Pr = 0.709) in a vertical channel driven by differentially heated walls at Rayleigh numbers (Ra) up to 2.0 × 107. The present data is validated with that from Versteegh and Nieuwstadt [9] for Ra = 5.0 × 106. Using the present data for higher Ra, we appraise and compare the various proposed scaling laws for the mean ...

متن کامل

Numerical simulation of mixed convection heat transfer of nanofluid in an inclined enclosure by applying LBM

Mixed convection of Cu-Water nanofluid is studied numerically in a shallow inclined enclosure by applying lattice Boltzmann method. The D2Q9 lattice and internal energy distribution function based on the BGK collision operator are used in order to develop the thermal flow field. The enclosure's hot lid has the constant velocity of U0 while its cold lower wall has no motion. Moreover, sidewalls ...

متن کامل

Numerical Simulation of Forced Convection of Nanofluids by a Two-Component Nonhomogeneous Model

Nanofluids, in which nano-sized particles (typically less than 100 nm) are suspended in liquids, have emerged as a possible effective way of improving the heat transfer performance of common fluids. In this paper a numerical study is performed to analyze the wall shear stress and heat transfer coefficient of γAl2O3-water nanofluids under laminar forced convection through a circular pipe. It is ...

متن کامل

Numerical simulation of Al2O3–water nanofluid mixed convection in an inclined annulus

Laminar mixed convection of Aluminium oxide (Al2O3)–water nanofluid flow in an inclined annulus using a single-phase approach was numerically studied. Constant heat flux boundary conditions were applied on the inner and outer walls. All the thermophysical properties of nanofluid, such as, viscosity, heat capacity, thermal conductivity, and thermal expansion coefficient, except density in the bo...

متن کامل

Numerical Simulation and Parametric Reduced Order Modeling of the Natural Convection of Water-Copper Nanofluid

In this article, a coupled computational framework is presented for the numerical simulation of mass transfer under the effects of natural convection phenomena in a field contains water-copper Nano-fluid. This CFD model is build up based on accurate algorithms for spatial derivatives and time integration. The spatial derivatives have been calculated using first order upwind and second order cen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Nuclear Engineering and Design

سال: 2022

ISSN: ['0029-5493', '1872-759X']

DOI: https://doi.org/10.1016/j.nucengdes.2021.111597